OCR Maths M2

Topic Questions from Papers
 Circular Motion

Answers

1	(i)	$\mathrm{T} \cos \theta=0.01 \times 9.8$	M1		resolving vertically	
		$8 / 10 \mathrm{~T}=0.01 \times 9.8$	A1		with $\cos \theta=8 / 10$	
		$\mathrm{T}=0.1225 \mathrm{~N}$	A1	3	AG	
	(ii)	$\mathrm{T}+\mathrm{T} \sin \theta=\mathrm{ma}$	M1		resolving horizontally	
		use of mr ω^{2}	M1			
		$\omega=5.72 \mathrm{rads}^{-1}$	A1	3		
	(iii)	K.E. $=1 / 2 \mathrm{x} 0.01 \mathrm{x}(\mathrm{r} \omega)^{2}$	M1		$1 / 2 \mathrm{mv}^{2}$ with v=rw	
		K.E. $=0.0588$	AlV	2	$\int 0.0018 \times$ their ω^{2}	8

(Q3, June 2005)

2	(i)	$\mathrm{R} \cos 30^{\circ}=0.1 \times 9.8$	M1		resolving vertically	
			A1			
		$\mathrm{R}=1.13 \mathrm{~N}$	A1	3		
	(ii)	$\mathrm{r}=0.8 \cos 30^{\circ}=0.693$ or $2 \sqrt{ } 3 / 5$	B1		may be implied	
		$\mathrm{R} \cos 60^{\circ}=0.1 \times 0.693 \omega^{2}$	M1		or $0.1 \mathrm{v}^{2} / \mathrm{r}$ \& $\omega=\mathrm{v} / \mathrm{r}$	
			A1			
		$\omega=2.86$	A1	4		
	(iii)	$\mathrm{T}=1.96 \mathrm{~N}$	B1	1		
	(iv)	$\mathrm{R} \cos 30^{\circ}=\mathrm{T} \cos 60^{\circ}+0.1 \mathrm{x} 9.8$	M1			
			A1			
		$\mathrm{R}=2.26 \mathrm{~N}$	A1			
		$\mathrm{R} \cos 60^{\circ}+\mathrm{T} \cos 30^{\circ}=0.1 \mathrm{xv}^{2} / \mathrm{r}$	M1		or $\mathrm{mr} \omega^{2}$ \& use of $\mathrm{v}=\mathrm{r} \omega$	
			A1		with $\mathrm{R}=1.13$ can get M1 only	
		$4.43 \mathrm{~ms}^{-1}$	A1	6		14
or	(iv)	$\begin{aligned} & \text { LHS (or RHS) } \\ & \mathrm{T}+0.1 \times 9.8 \cos 60^{\circ} \end{aligned}$	M1*		method without finding R i.e. resolving along PA	
			A1			
		$\begin{aligned} & \text { RHS (or LHS) } \\ & 0.1 \times \mathrm{v}^{2} / \mathrm{rx} \cos 30^{\circ} \end{aligned}$	M1*			
			A1		r to be $0.8 \cos 30^{\circ}$ for A1	
		solve to find v	M1*		depends on 2* Ms above	
		$4.43 \mathrm{~ms}^{-1}$	A1	(6)		

(Q8, Jan 2006)

3	(i)	$\begin{aligned} & \mathrm{T}=4.9 \mathrm{~N} \\ & \mathrm{~T}=0.3 \times 0.2 \times \omega^{2} \\ & \omega=9.04 \mathrm{rads}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	$\begin{aligned} & \text { B0 for } 0.5 \mathrm{~g} \\ & \text { or } 0.3 \mathrm{v}^{2} / 0.2 \text { and } \omega=\mathrm{v} / 0.2 \end{aligned}$	6
	(ii)	$\begin{aligned} & \cos \theta=\sqrt{0.6 / 0.8}(0.968) \\ & T \cos \theta=0.5 \times 9.8 \\ & T=5.06 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1	4	($\theta=14.5^{\circ}$) angle to vert. or equiv. angle consistent with diagram can be their angle	
	(iii)	$\begin{aligned} & \mathrm{T} \sin \theta=0.5 \mathrm{xv}^{2} / 0.2 \\ & \mathrm{v}=0.711 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	must be a component of T $(\sin \theta=1 / 4)$ can be their angle	11

4	(i)	$\mathrm{T} \sin 30^{\circ}$	B1			
		$\mathrm{T} \sin 30^{\circ}=0.3 \mathrm{x} 0.4 \times 2^{2}$	M1		resolving horizontally	
			A1			
		$\mathrm{T}=0.96$	A1	4		
	(ii)	$\mathrm{R}+\mathrm{T} \cos 30^{\circ}=0.3 \times 9.8$	M1		resolving vertically	
			A1			
		$\mathrm{R}=2.11$	A1/	3	\int their T (2.94-T $\left.\cos 30^{\circ}\right)$	
	(iii)	$\mathrm{T}_{1} \sin 30^{\circ}=0.3 \mathrm{xv}^{2} / 0.4$	M1		or $0.3 \times 0.4 \times \omega^{2}$	
			A1		$\left(\mathrm{T}_{1}=1.5 \mathrm{v}^{2}\right)$	
		$\mathrm{T}_{1} \cos 30^{\circ}=0.3 \times 9.8$	B1		($\mathrm{T}_{1}=1.96 \sqrt{3}=3.3948$)	
		$\mathrm{R}=0$	B1		may be implied or stated	
		$\tan 30^{\circ}=\mathrm{v}^{2} /(0.4 \times 9.8)$ for elim of T_{1}	M1		and $\mathrm{v}=0.4 \omega(\omega=3.76)$	
		$\mathrm{v}=1.50$	A1	6		13

(Q7, Jan 2007)

$\mathbf{5}$ (i)	$5 \cos 30^{\circ}=0.3 \times 9.8+\operatorname{Scos} 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$\mathrm{r}=0.4 \sin 30^{\circ}=0.2$	B1	may be on diagram
	$5 \sin 30^{\circ}+\operatorname{Sin} 60^{\circ}=0.3 \times 0.2 \times \omega^{2}$	M1	res. horizontally (3 parts with comps)
	$9.04 \mathrm{rads}^{-1}$	A1 3	

(Q6, June 2007)

6 (i)(a)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}=2.94 \\ & \mathrm{~T}=4.16 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } 2 \\ & \hline \end{aligned}$	Resolving vertically AG	
(b)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{T}=0.3 \times 1.96 \omega^{2} \\ & \text { (res. horiz.) } \\ & \omega=3.47 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 3 \end{aligned}$	calculates $\mathrm{v}=6.81$ (Max 2/3)	
(ii)(a)	$\begin{aligned} & \mathrm{T} \cos 30^{\circ}+\mathrm{T} \cos 60^{\circ}=2.94 \\ & \mathrm{~T}=2.15 \mathrm{~N} \end{aligned}$	M1 A1 A1 3	Resolving vertically	
(b)	$\begin{aligned} & \text { Tcos } 30^{\circ}+\mathrm{T} \cos 60^{\circ}=0.3 \mathrm{v}^{2} / 1.5 \\ & (\text { res. horiz. } \\ & \mathrm{v}=3.83 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { calculates } \omega=2.56 \\ & (\operatorname{Max} 2 / 3) \end{aligned}$	11

(Q6, Jan 2008)

$\mathbf{8}$ (i)	$0.8 S$	B1	vert comp of S
	$0.6 T$	B1	vert comp of T
	$S \cos \alpha=T \cos \beta+0.2 \times 9.8$	M1	
(ii)	$0.8 S=0.6 T+1.96$	aef	A1 $\mathbf{4}$
	$0.8 T$	AG $\quad 4 S=3 T+9.8$	
	$0.2 \times 0.24 \times 8^{2}$	B1	
	$S \sin \alpha+T \sin \beta=0.2 \times 0.24 \times 8^{2}$	B1	$3.072 \quad 384 / 125$
	$6 S+8 T=30.72$	M1	must be $m r \omega^{2}$
	eliminate S or T	A1	aef
	$S=3.4 \mathrm{~N}$	M1	
	$T=1.3 \mathrm{~N}$	A1	3.411

(Q5, Jan 2009)

9 (i)	$T=0.4 \times 0.6 \times 2^{2}$	M1	
	$T=0.96 \mathrm{~N}$	A1 $\mathbf{2}$	
(ii)	$S-T$	B1	may be implied
	$S-T=0.1 \times 0.3 \times 2^{2}$	M1	
		A1	
	$S=1.08$	A1 $\mathbf{4}$	
(iii)	$v=r \omega$	M1	
	$v_{P}=0.6$	A1	
	$v_{B}=1.2$	A1	
	$1 / 2 \times 0.1 \times 0.6^{2}+1 / 2 \times 0.4 \times 1.2^{2}$	M1	$(0.018+0.288)$ separate speeds
	0.306	A1 $\mathbf{5}$	

(Q4, June 2009)

10 (i)	$\begin{aligned} & \cos \theta=3 / 5 \text { or } \sin \theta=4 / 5 \text { or } \tan \theta=4 / 3 \\ & \text { or } \theta=53.1^{\circ} \\ & R \cos \theta=0.2 \times 9.8 \\ & R=3.27 \mathrm{~N} \text { or } 49 / 15 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	$\theta=$ angle to vertical	
(ii)	$\begin{aligned} & \mathrm{r}=4 \\ & \mathrm{R} \sin \theta=0.2 \times 4 \times \omega^{2} \\ & \omega=1.81 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & {[4]} \end{array}$		
(iii)	$\begin{aligned} & \varphi=26.6^{\circ} \text { or } \sin \varphi=\frac{1}{\sqrt{5}} \text { or } \cos \varphi=\frac{2}{\sqrt{5}} \text { or } \\ & \tan \varphi=0.5 \\ & \mathrm{~T}=0.98 \text { or } 0.1 \mathrm{~g} \\ & \mathrm{~N} \cos \theta=\mathrm{T} \sin \varphi+0.2 \times 9.8 \\ & \mathrm{~N} \times 3 / 5=0.438+1.96 \\ & \mathrm{~N}=4.00 \\ & \mathrm{~N} \sin \theta+\mathrm{T} \cos \varphi=0.2 \times 4 \times \omega^{2} \\ & 4 \times 4 / 5+0.98 \cos 26.6^{\circ}=0.8 \omega^{2} \\ & \omega=2.26 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 M1 A1 A1 [8]	$\varphi=$ angle to horizontal Vertically, 3 terms may be implied Horizontally, 3 terms	15

11 (i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{2} \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { *M1 } \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { A1 } \\ & \text { Dep*M1 } \\ & \text { A1 } 6 \end{aligned}$	3 terms 3 terms; $\mathrm{a}=\mathrm{r} \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \\ & \text { or } \mathrm{T} \cos 45^{\circ}=\mathrm{mg} \\ & \text { or } \mathrm{T}=\mathrm{ml} \omega^{2} \\ & \text { Solve to find } \omega \\ & \omega=4.16 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 4	may be implied

(Q5, June 2010)

12	(i)		$\begin{aligned} & 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+1 \times 0.6 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+0 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=4 \times 0.3 \\ & \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=1 \times 0.3+1 \times 0.6+0 \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=4 \times 0.3-1 \times 0.3 \\ & \mathrm{x}_{\mathrm{G}}=0.4 \text { (from } \mathrm{AD} \text {) } \mathrm{OR} \mathrm{x}_{\mathrm{G}}=0.2 \quad \text { (from BC) } \\ & \mathrm{y}_{\mathrm{G}}=0.3 \mathrm{~m} \text { from } \mathrm{AB} \text { or } \mathrm{CD} \\ & \mathrm{AG}^{2}=0.4^{2}+0.3^{2} \\ & \mathrm{AG}=0.5 \mathrm{~m} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Table of moments idea. M0 for reducing to 1D problem. Masses/weights may be included. Pythagoras with 2 appropriate distances. This may only be seen in (ii), allow M1A1 in this case.
	(ii)		$\begin{aligned} & v=0.5 \times 3 \\ & v=1.5 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1	Allow use of candidate's $0.2,0.4,0.3,0.5$

(Q1, Jan 2011)

13	(i)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \cos 30+\mathrm{T}_{\mathrm{B}} \cos 60=0.4 \mathrm{~g} \\ & 2 \mathrm{~T}^{2} \cos 30+\mathrm{T} \cos 60=0.4 \mathrm{~g} \\ & \mathrm{~T}_{\mathrm{B}}=1.76 \mathrm{~N} \\ & \mathrm{~T}_{\mathrm{A}}=3.51 \mathrm{~N} \end{aligned}$	M1 A1 A1 A1 [4]	Resolves vertically, 3 terms $\mathrm{T}=1.756$. Watch for MR of $\mathrm{T} \cos 30+2 \mathrm{~T} \cos 60=0.4 \mathrm{~g}$ Accept 3.52
	(ii)	$\begin{aligned} & r=0.5 \sin 30(=0.25) \\ & 3.51 \sin 30+1.76 \sin 60=0.4 \omega^{2} 0.5 \sin 30 \\ & \omega=5.72 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1ft A1 [4]	N2L radial, 3 terms cv(1.76, 3.51, 0.25) Accept 5.73

(Q3, Jan 2011)

14 i	$\begin{aligned} & R \sin 30=0.3 \mathrm{~g} \\ & R \cos 30=0.3 \omega^{2} \times 0.12 \\ & \omega=11.9 \mathrm{rads}^{-1} \end{aligned}$	M1 A1 M1 A1 A1 [5]	$R=5.88 \text { or } 0.6 \mathrm{~g}$ accept $\mathrm{v}^{2} / 0.12$ for acceleration cao
ii	$\begin{aligned} & S+R \cos 30=0.3 \times 2.1^{2} / 0.2 \\ & R=5.88 \\ & S=1.52 \mathrm{~N} \end{aligned}$	M1 A1 B1ft A1 [4]	Resolve and use N2L on sphere Q, 3 terms needed $\mathrm{ftcv}(\mathrm{R})$ from (i)
iii	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=11.9 \times 0.12 \text {, or } \mathrm{h}=0.2 / \tan 30 \text { or } 0.12 / \tan 30 \text { or } 0.08 / \tan 30 \\ & +/-(\mathrm{Q}-\mathrm{P})= \\ & \quad 0.5 \times 0.3\left(2.1^{2}-(11.9 \times 0.12)^{2}\right) \\ & \quad+(0.2 / \tan 30-0.12 / \tan 30) \times 0.3 \mathrm{~g} \\ & \mathrm{Q}-\mathrm{P}=+/-0.763 \mathrm{~J} \end{aligned}$	B1 M1 A2ft A1 [5]	$\mathrm{cv}(\omega)$ from (i) Attempt to calculate KE or PE for both particles KE difference (ft on $\mathrm{cv}(\omega)$) or PE difference $Q-P=+/-(0.3556+0.4074)$

(Q4, Jan 2012)

(Q5, June 2012)

17	(i)	(a)	$\begin{gathered} 0.8 \mathrm{~F}+0.6 \mathrm{R}=0.4 \mathrm{~g} \\ 4 \mathrm{~F}+3 \mathrm{R}=19.6[\mathbf{A G}] \end{gathered}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Attempt to resolve vertically www	
	(i)	(b)	$0.8 \mathrm{R}-0.6 \mathrm{~F}=0.4 \times 4.5^{2} / 3$ Solve for R or F $\begin{aligned} & \mathrm{F}=1.516 \\ & \mathrm{R}=4.512 \end{aligned}$ Use $\mu=\mathrm{F} / \mathrm{R}$ to get $\mu=0.336$ [AG]	M1 A1 M1 A1 A1 B1 $[6]$	Attempt with three terms. aef including cos, sin correct angle Use 2 relevant resolutions.	
	(ii)		$\begin{aligned} & 0.6 \mathrm{R}-0.8 \mathrm{~F}=0.4 \mathrm{~g} \\ & \mathrm{R}=11.8 \text { or } \mathrm{F}=3.98 \\ & 0.8 \mathrm{R}+0.6 \mathrm{~F}=0.4 \times 3 \times \omega^{2} \\ & \omega=3.14 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 A1 [6]	Resolve vertically, three terms N2L, resolve horizontally, three terms	

(Q8, Jan 2013)

18	(i)	Vertical force $=m g$ Horizontal force $=m \times 0.4 \times 7^{2}$ Uses vertical force $=\mu \times$ horizontal force $\mu=0.5$	$\begin{array}{\|c\|} \hline \text { *B1 } \\ * \mathrm{M} 1 \mathrm{~A} 1 \\ \text { dep*M1 } \\ \text { A1 } \\ {[\mathbf{5}]} \\ \hline \end{array}$	Dependent on B1 and M1 If a value for m used B0M1A0M1A0 max.
	(ii)	$m g=T \times 0.3 / 0.5$ $m \times 0.4 \omega^{2}=T \times 0.4 / 0.5$ Solve for ω or v $\omega=5.72 \mathrm{rad} \mathrm{~s}^{-1}$	$\begin{gathered} \text { B1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	Resolve T and equate to mass $\times\left(r \omega^{2}\right.$ or $\left.v^{2} / r\right)$ allow $7 \sqrt{ } 6 / 3$ If a value for m and/or T used B0M1A0M1A0 max.

